Sections induced from weakly sequentially complete spaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On sequentially h-complete groups

A topological group G is sequentially h-complete if all the continuous homomorphic images of G are sequentially complete. In this paper we give necessary and sufficient conditions on a complete group for being compact, using the language of sequential h-completeness. In the process of obtaining such conditions, we establish a structure theorem for ω-precompact sequentially h-complete groups. As...

متن کامل

Sequentially Compact, Franklin-Rajagopalan Spaces

A locally compact T2-space is called a Franklin-Rajagopalan space (or FR-space) provided it has a countable discrete dense subset whose complement is homeomorphic to an ordinal with the order topology. We show that (1) every sequentially compact FR-space X can be identified with a space constructed from a tower T on w (X = X(T)), and (2) for an ultrafilter u on w, a sequentially compact FR-spac...

متن کامل

Weakly Continuously Urysohn Spaces

We study weakly continuously Urysohn spaces, which were introduced in [Z]. We show that every weakly continuously Urysohn w∆-space has a base of countable order, that separable weakly continuously Urysohn spaces are submetrizable, hence continuously Urysohn, that monontonically normal weakly continuously Urysohn spaces are hereditarily paracompact, and that no linear extension of any uncountabl...

متن کامل

On weakly bisequential spaces

Weakly bisequential spaces were introduced by A.V. Arhangel’skii [1], in this paper. We discuss the relations between weakly bisequential spaces and metric spaces, countably bisequential spaces, Fréchet-Urysohn spaces.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Studia Mathematica

سال: 1973

ISSN: 0039-3223,1730-6337

DOI: 10.4064/sm-49-1-95-97